Detecting Social Media Bots with Variational AutoEncoder and k-Nearest Neighbor

نویسندگان

چکیده

Malicious social media bots are disseminators of malicious information on networks and seriously affect security the network environment. Efficient reliable classification is crucial for detecting manipulation in networks. Aiming to correct defects high-cost labeling unbalanced positive negative samples existing methods bot detection, reduce training abnormal model, we propose an anomaly detection framework based a combination Variational AutoEncoder algorithm. The purpose use automatically encode decode sample features. normal features more similar initial after decoding; however, there difference between decoding representation original combined, then method used detection. results show that area under curve proposed model identifying reaches 98% through experiments public datasets, which can effectively distinguish from common users further verify performance model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph

We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Near neighbor searching with K nearest references

Proximity searching is the problem of retrieving, from a given database, those objects closest to a query. To avoid exhaustive searching, data structures called indexes are built on the database prior to serving queries. The curse of dimensionality is a well-known problem for indexes: in spaces with sufficiently concentrated distance histograms, no index outperforms an exhaustive scan of the da...

متن کامل

Unsupervised K-Nearest Neighbor Regression

In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11125482